
# **Instructions:**

RELAY

For micro:bit

v1<sub>F</sub>





# TABLE OF CONTENTS

| WARNING                    | 2 |
|----------------------------|---|
| Introduction               |   |
| Connecting your micro:bit  |   |
| Switching Inductive Loads. |   |
| Blocks Example             |   |
| MicroPython Example        |   |
| Support                    |   |
| MonkMakes                  |   |

### **WARNING**

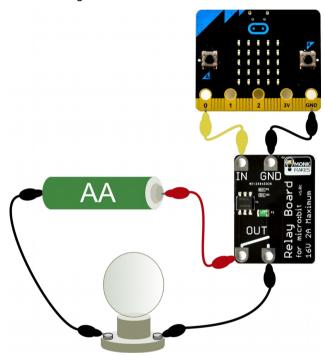
This relay must NOT be used to switch high voltage AC. The maximum voltage for this product is 16V!

#### Introduction

The MonkMakes Relay for micro:bit is a solid-state (no moving parts) relay that allows an output of a micro:bit to turn things on and off.

A micro:bit can turn an LED on and off directly, but anything more powerful requires something like a relay or a transistor. Using a transistor to switch something on and off requires a shared ground connection with the micro:bit and a knowledge electronics that you or your students may not be ready for. The MonkMakes Relay for micro:bit is much easier to use, acting like a simple micro:bit controlled switch.

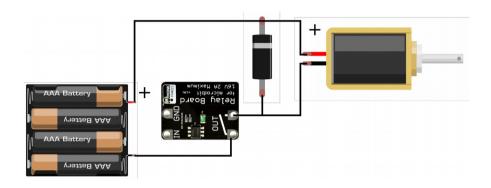
This relay can be used to switch low voltage devices such as light bulbs, a motor, a small heating element or even a string of 12V LED lighting. The voltage needs to be kept under 16V, but the relay will automatically protect itself against too much current.


- Solid-sate relay (up to 1 Amp continuous, 2A for short periods less than a minute)
- Love voltage (< 16A) DC or AC</li>
- Active LED indicator
- Resettable 'polyfuse' to protect against over-current

#### **CONNECTING YOUR MICRO:BIT**

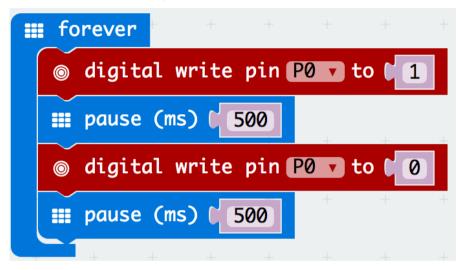
The Relay requires just two connections to the micro:bit. One to GND (ground) and one to whatever pin is to be used to control the relay's switching action.

When attaching the alligator clips to the micro:bit, make sure that the clips are perpendicular to the board so that they are not touching any of the neighbouring connectors on the micro:Bit edge connector.


Here's an example of how you could wire up a MonkMakes Relay for micro:bit to turn an old fashioned light bulb on and off.



### **SWITCHING INDUCTIVE LOADS**


If you plan to use your relay to switch inductive loads, such as solenoids or motors, then there is a risk that 'back EMF' voltage spikes may damage the Relay for micro:bit.

When driving inductive loads, a 'flyback' or 'kickback' diode across the terminals of the solenoid or motor, as shown below.



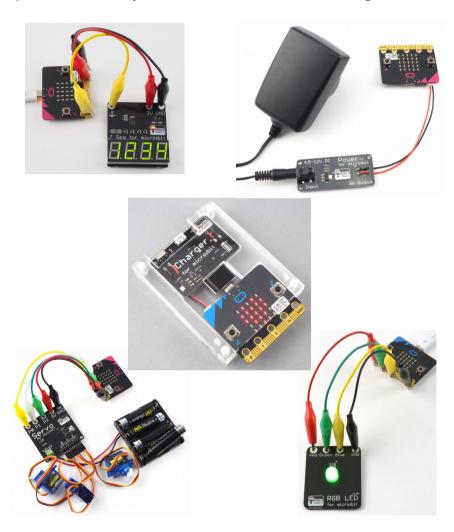
### **BLOCKS EXAMPLE**

To control things with the Relay for micro:bit you need to turn the GPIO pin of the micro:bit using code like this. This example turns the relay on for half a second, off for half a second and then repeats.



## MICROPYTHON EXAMPLE

Here's how you would do the same thing in MicroPython.


# SUPPORT

You can find the Product's information page here: <a href="https://monkmakes.com/mb\_relay">https://monkmakes.com/mb\_relay</a> and if you need further support, please email <a href="support@monkmakes.com">support@monkmakes.com</a>.

## **MONKMAKES**

For more information on this kit, the product's home page is here: https://monkmakes.com/mb\_charger

As well as this kit, MonkMakes makes all sorts of kits and gadgets to help with your micro:bit and Raspberry Pi projects. Find out more, as well as where to buy here: <a href="https://monkmakes.com">https://monkmakes.com</a> you can also follow MonkMakes on Twitter @monkmakes.

